skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Vargas, Fernando"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Quantum information technologies demand highly accurate control over quantum systems. Achieving this requires control techniques that perform well despite the presence of decohering noise and other adverse effects. Here, we review a general technique for designing control fields that dynamically correct errors while performing operations using a close relationship between quantum evolution and geometric space curves. This approach provides access to the global solution space of control fields that accomplish a given task, facilitating the design of experimentally feasible gate operations for a wide variety of applications. 
    more » « less
  2. null (Ed.)
  3. null (Ed.)
  4. null (Ed.)
  5. RationaleA major hurdle in identifying chemicals in mass spectrometry experiments is the availability of tandem mass spectrometry (MS/MS) reference spectra in public databases. Currently, scientists purchase databases or use public databases such as Global Natural Products Social Molecular Networking (GNPS). The MSMS‐Chooser workflow is an open‐source protocol for the creation of MS/MS reference spectra directly in the GNPS infrastructure. MethodsAn MSMS‐Chooser Sample Template is provided and completed manually. The MSMS‐Chooser Submission File and Sequence Table for data acquisition were programmatically generated. Standards from the Mass Spectrometry Metabolite Library (MSMLS) suspended in a methanol–water (1:1) solution were analyzed. Flow injection on an LC/MS/MS system was used to generate negative and positive mode data using data‐dependent acquisition. The MS/MS spectra and Submission File were uploaded to MSMS‐Chooser workflow in GNPS for automatic selection of MS/MS spectra. ResultsData acquisition and processing required ~2 h and ~2 min, respectively, per 96‐well plate using MSMS‐Chooser. Analysis of the MSMLS, over 600 small molecules, using MSMS‐Chooser added 889 spectra (including multiple adducts) to the public library in GNPS. Manual validation of one plate indicated accurate selection of MS/MS scans (true positive rate of 0.96 and a true negative rate of 0.99). The MSMS‐Chooser output includes a table formatted for inclusion in the GNPS library as well as the ability to directly launch searches via MASST. ConclusionsMSMS‐Chooser enables rapid data acquisition, data analysis (selection of MS/MS spectra), and a formatted table for inspection and upload to GNPS. Open file‐format data (.mzML or.mzXML) from most mass spectrometry platforms containing MS/MS spectra can be processed using MSMS‐Chooser. MSMS‐Chooser democratizes the creation of MS/MS reference spectra in GNPS which will improve annotation and strengthen the tools which use the annotation information. 
    more » « less